# Awesome XAI [](https://awesome.re)
A curated list of XAI and Interpretable ML papers, methods, critiques, and
resources.
Explainable AI (XAI) is a branch of machine learning research which seeks to
make various machine learning techniques more understandable.
Contents
Papers
Landmarks
These are some of our favorite papers. They are helpful to understand the field and critical aspects of it. We believe this papers are worth reading in their entirety.
- Explanation in Artificial Intelligence: Insights from the Social Sciences - This paper provides an introduction to the social science research into explanations. The author provides 4 major findings: (1) explanations are constrastive, (2) explanations are selected, (3) probabilities probably don't matter, (4) explanations are social. These fit into the general theme that explanations are -contextual-.
- Sanity Checks for Saliency Maps - An important read for anyone using saliency maps. This paper proposes two experiments to determine whether saliency maps are useful: (1) model parameter randomization test compares maps from trained and untrained models, (2) data randomization test compares maps from models trained on the original dataset and models trained on the same dataset with randomized labels. They find that "some widely deployed saliency methods are independent of both the data the model was trained on, and the model parameters".
Surveys
- Explainable Deep Learning: A Field Guide for the Uninitiated - An in-depth description of XAI focused on technqiues for deep learning.
Evaluations
- Quantifying Explainability of Saliency Methods in Deep Neural Networks - An analysis of how different heatmap-based saliency methods perform based on experimentation with a generated dataset.
XAI Methods
- Ada-SISE - Adaptive semantice inpute sampling for explanation.
- ALE - Accumulated local effects plot.
- ALIME - Autoencoder Based Approach for Local Interpretability.
- Anchors - High-Precision Model-Agnostic Explanations.
- Auditing - Auditing black-box models.
- BayLIME - Bayesian local interpretable model-agnostic explanations.
- Break Down - Break down plots for additive attributions.
- CAM - Class activation mapping.
- CDT - Confident interpretation of Bayesian decision tree ensembles.
- CICE - Centered ICE plot.
- CMM - Combined multiple models metalearner.
- Conj Rules - Using sampling and queries to extract rules from trained neural networks.
- CP - Contribution propogation.
- DecText - Extracting decision trees from trained neural networks.
- DeepLIFT - Deep label-specific feature learning for image annotation.
- DTD - Deep Taylor decomposition.
- ExplainD - Explanations of evidence in additive classifiers.
- FIRM - Feature importance ranking measure.
- Fong, et. al. - Meaninful perturbations model.
- G-REX - Rule extraction using genetic algorithms.
- Gibbons, et. al. - Explain random forest using decision tree.