Initiatives

Before we dive in, here are some notable projects and initiatives that might interest you as well.

Related to machine learning

Code against climate change


Dive Into Machine Learning

Dive into Machine Learning

Hi there! You might find this resource helpful if:

For some great alternatives, jump to the end or check out Nam Vu's guide, Machine Learning for Software Engineers.

Of course, there is no easy path to expertise. Also, I'm not an expert! I just want to connect you with some great resources from experts. Applications of ML are all around us. I think it's in the public interest for more people to learn more about ML, especially hands-on, because there are many different ways to learn.

Whatever motivates you to dive into machine learning, if you know a bit of Python, these days you can get hands-on with a machine learning "Hello World!" in minutes.

Let's get started

Tools you'll need

If you prefer local installation

You can install Python 3 and all of these packages in a few clicks with the Anaconda Python distribution. Anaconda is popular in Data Science and Machine Learning communities. (Use whichever tool works for you. If you're unsure or need more context about using conda/virtualenv/poetry/pipenv, here's a very helpful guide)

Cloud-based options

Some options you can use from your browser:

For other options, see:

Let's go!

Learn how to use Jupyter Notebook (5-10 minutes). (You can learn by screencast instead.)

Now, follow along with this brief exercise: An introduction to machine learning with scikit-learn. Do it in ipython or a Jupyter Notebook, coding along and executing the code in a notebook.